Opto-electronic products:

♣ Magneto optical crystals

Pictures	Materials / Sizes	Features / Applications
00-00	of magneto-optical materials for use in the visible and the near- infrared spectral regions (400-470nm and 500-1500nm)	Large Verdet Constant (Typical 35dB, up to 40dB) Low optical losses (< 0.1%/cm) High thermal conductivity (7.4Wm-1K-1) High laser damage threshold (> 1GW/cm ²) Refractive index 1.95 at 1064nm Applications: Faraday rotator, Optical isolator, Magnetic sensor, Free space isolator
	TSAG (Tb₃Sc₂Al₃O₁₂) Faraday crystal is an ideal magneto- optical crystal, which is mainly used in the wavelength range of 400-1600nm, namely the visible and infrared bands Diameter: 1-70mm	

Single crystal substrates / Piezoelectric effect crystals

Pictures	Materials / Sizes	Features / Applications
	LSAT (LaAlO₃)_{0.3}(Sr₂AlTaO₆)_{0.7} is a newly developing crystal with peroviskite structure and twin-free Size: 2"- 3" dia x 0.5mm; 10x10x0.5mm; 5x5x0.5mm Special size and orientation is available upon request	LSAT has excellent lattice match with high Tc superconductors and many oxide materials LSAT has lower melting point and can be grown by CZ technology at lower cost, therefore, it is expected to replace LaAlO3 and SrTiO3 as a common single crystal substrate for epitaxial oxide thin films for gain magnetic ferro-electronic and superconductive devices
	Subsituted Gadolinium Gallium Garnet (SGGG) Gadolinium gallium garnet (Gd ₃ Ga ₅ O ₁₂ or GGG) is a special substrate magneto optical films. In optical communication equipment, a large number of 1.3 and 1.5 micron optical isolators are needed, and the core component is YIG or BIG film placed in the magnetic field Size: Up to 3 inches diameter	The good physical, mechanical and chemical stability of GGG also ensures the requirements of the substrate in the process of film preparation. The substrate material is made of

O	Co2+: MgAl₂O₄ (Co2+: Spinel or Co: MALO) crystals is a new material for passive Q-switching in lasers emitting from 1.2 to 1.6µm, in particular, for eye-safe 1.54µm Er: glass laser, but also works at 1.44µm and 1.34µm wavelengths Size as specified: Round, square or flats	High absorption cross section (3.5E-19cm ²) permits Q-switching of Er: glass laser without intracavity focusing both with flash-lamp and diode-laser pumping. Negligible excited-state absorption results in high contrast of Q-switch, i.e. the ratio of initial (small signal) to saturated absorption is higher than 10
	Lanthanum gallium silicate (La₂Ga₅SiO₁₄) is a phenomenal invention. Though langasite was initially developed as a laser crystal, it revealed a remarkable combination of piezoelectric qualities, which opened up new opportunities to use the LGS crystal in radio frequency devices Sizes: 60mm dia. max.; 70mm length for rod or flats	Can withstand high and low temperature changes Stable physical and chemical properties
	LiNbO ₃ (Lithium niobate, LN) crystal is a negative uniaxial crystal and one of the most thoroughly characterized optical materials. With its wide transparency range in the visible and mid-infrared and the excellent chemical and mechanical stability, LN crystal can be used as a bifrengent material for applications in infrared SAW Grade Doping Lithium Niobate Wafer MgO Er Fe Doped LT Optical Grade Size: Up to 8 inches diameter	With its large electro-optic coefficients, wide optical transparency window, and availability of high optical quality crystals, LN (lithium niobate) crystal is often the material of choice for optical modulation and Q-switch at near-infrared and infrared wavelengths For electro-optic modulators (EOM) the crystal can be Z-cut with zero residual birefringence along the direction of light propagation or X-cut with non-zero residual birefringence and the maximized effective electro-optic coefficient For Q-switch the crystal is typically Z-cut with zero residual birefringence and an electric field is applied transverse to the direction of light propagation. The piezoelectric ringing in LN is a disadvantage at high repetition frequency, but can be overcome to some extent with proper piezoelectrically damped designs
	Gallium Gadolinium Garnet (Gd₃Ga₅O₁₂ or GGG) single crystal substrates is used as substrates for liquid epitaxy growth of YIG or BIG film GGG substrates is dedicated substrates for magneto optical film Size: Up to 4 inches	Low optical loss (< 0.1%/cm), high thermal conductivity (7.4Wm-1K-1) High laser damage threshold (> 1GW/cm ²) GGG has been successfully applied in the magnetic refrigeration industry in the temperature zone below 20k for market Hell flow and helium-nitrogen liquefaction pre-stage refrigeration
	Black amorphous silicon is obtained by the reduction of sand (SiO ₂) with carbon. Ultra-pure crystals if silicon have a blue-grey metallic sheen. Bulk silicon is un-reactive towards oxygen, water and acids (except HF), but dissolves in hot alkalis. Silicon is used in semiconductors, alloys and polymers Size: Up to 8 inches	Doping type: No-doped Resistivity Ω . Cm: 102~104 EPD (cm ⁻²): <= 100 crystallographic direction: <111>; <100>; <110> ±0.5° Surface: one or two sides polished
	Yellow Black Fe₂O₃ Doped LiTaO₃ Wafer : LiTaO ₃ is an E-O crystal widely used for E-O devices, due to its good optical NLO and E-O properties, as well as high damage threshold Sizes: Up to 6 inches diameter	Test results show that the lattice constant increases with the increase of Fe ₂ O ₃ content. This result indicates a better photorefractive property of Fe: LiTaO ₃ than undoped LiTaO ₃ Applications: SAW, Q-switch, Light modulator, Sound and light switch, Laser frequency multiplication, Optical parametric oscillator, Optical memory, High temperature and high frequency ultrasonic detector, Infrared detector, Optical pick-up devices

♣ Faraday isolator

Pictures	Materials / Sizes	Features / Applications
	12mm Aperture 850nm Faraday Optical Isolator High Power	Superior performance and reliability
	An optical isolator is a passive magneto-optic device based on the Faraday	High isolation / low insertion loss
	effect. It is an optical component that allows the transmission of light in	High power models with exit ports for return signal monitoring or beam injection
	only one direction and prevents unwanted feedback into an optical	
	oscillator. The isolators are based on our own TGG or TSAG Faraday	
	crystals of low loss and high optical power threshold	Optical measuring equipment, Optical parametric oscillator
	SGS OCT System Faraday Rotation Isolator 12mm Aperture	Free space input and output
	Faraday rotator provides non-reciprocal rotation while maintaining linear	Isolators are available for optional $\lambda/2$ plate
0	polarization, The plane of polarization will be rotated 45° when light	High damage threshold and power handling
	transmits through the Faraday rotator in the forward direction and rotated	Peak isolation: Range from 30dB to 45dB
	additional 45° in the same relative direction with respect to magnetic field	Applications: Laser sensing system, Ultrafast laser system, OCT system, Laser
	when light travels backwards from the reverse direction. It will generate	detection
	total rotation of 90° and reject the light coming from the reverse direction	
	Free Space Customized Faraday Isolator 3mm - 12mm	Superior performance and reliability
	Our free-space optical isolator (Faraday isolator) and Faraday rotator	
		High power models with exit ports for return signal monitoring or beam injection
	with typical isolation as high as 40dB (single stage), and 75dB (dual	
		Applications: Maintain the light's linear polarization, Avoid deleterious effects of
		back reflection in laser diodes, Eliminate instability in amplified laser systems
	of low, medium or high power capability	caused by ASE, Reduce Nd and Yb oscillations from ASE created by amplifiers
	Durable Ethernet Optical Isolator Optical Fiber Isolator For Laser	Free space input and output
	Systems	Orthogonal isolated beams
	Our Free Space Isolators could maintain the light's linear polarization,	Isolators are available for optional $\lambda/2$ plate
	through rotating the plane of polarized light 45° in the forward direction	All isolators contain escape ports
	and an additional 45° of non-reciprocal rotation in the reverse direction	High damage threshold and power handling
		Peak isolation: Range from 30dB to 45dB

1550nm Faraday Optical Polarization Free Space Isolators	Superior performance and reliability
Polarization Free space isolators are used in the high-speed optical	Customized size and wavelength
transmitter or other pump laser which need to isolate the backward light.	High isolation / Low insertion loss
The isolators offer excellent performance with high isolation and low	Low, medium and high power options
insertion loss. Available in single stage or semi-double stage options are	Applications: Maintain the light's linear polarization, Reduce Nd and Yb oscillations
centered at 1310nm, 1490 or 1550nm. The free space isolators can offer	from ASE created by amplifiers, Avoid deleterious effects of back reflection in laser
a range of clear aperture diameters from 0.40mm to 1.5mm as standard	diodes, Eliminate instability in amplified laser systems caused by ASE

4 Scintilation crystals

Pictures	Materials / Sizes	Features / Applications
	Ia3d Cerium Doped Yttrium Aluminum Garnet For LED Illumination Cerium doped yttrium-aluminum garnet (Ce: LuAG) is a well established scintillator and has many attractive properties, such as fast decay (80ns), high light yield, emission peaks at 510nm that well matched with the sensitivity of commercial Si-CCD detectors as well as good mechanical and chemical stability	The Ce: LuAG is also a very appropriate crystal for imaging screens, LED lighting and laser lighting
	Ce Doped Gadolinium Aluminum Gallium Garnet Ce GAGG Single Crystal GAGG (Ce) - Gadolinium Aluminum Gallium Garnet (Gd ₃ Al ₂ Ga ₃ O ₁₂), doped with Ce is a newly developed scintillator. It is one of the brightest available scintillators with an emission peak at 520nm. GAGG (Ce) has good stopping power, is physically rugged and well suited to a broad range of applications	Good absorbers with good stopping powers - density 6.63g/cm ³ Robust with good mechanically characteristics
	Single Photon Emission Computed Tomography Spect High Thermal Conductivity Gagg Crystal Ce: GAGG crystal exhibits stable physical and chemical properties, high thermal conductivity, and resistance to harsh environments. It exhibits excellent scintillating performance, for example, high scintillating efficiency, high light yield, and fast decay time. Ce: GAGG crystals are widely used in photomultiplier tubes, photoelectric counters, scintillation	GAGG crystals are a promising medical imaging technology, such as X-ray photography, X-ray computed tomography (CT), and positron emission tomography (PET)

screens, and other devices. And used in high-energy particle detection and	
other fields, such as beta rays, gamma rays	

Laser crystals

Pictures	Materials / Sizes	Features / Applications
		High gain; Low threshold; High efficiency
	Neodymium-Doped Yttrium Aluminum Garnet NdYAG Crystal For	Low loss at 1064nm
	Laser Marking	High optical quality
	Nd: YAG lasers are used in manufacturing for engraving, etching, or	Good thermal conductivity and shock characteristics
		Applicable to many laser working modes (continuous, pulse, Q-switch, mode lock)
TTTTTTTTTT		Nd: YAG lasers are also employed to make subsurface markings in transparent
	for cutting and welding steel, semiconductors and various alloys	materials such as glass or acrylic glass and in white and transparent polycarbonate
		for identity documents
	Holmium Doped Yttrium Aluminum Garnet Ho YAG Laser Crystal	High laser gain; Low quantum defect; Long fluorescence life
and the second se	2100nm Wavelength	Large emission cross-section; High slope efficiency
	Ho: YAG (Holmium-doped Yttrium aluminum garnet, Ho: Y ₃ Al ₅ O ₁₂) is	High-energy storage capability
	commonly used as an efficient means to generate 2.1µm laser emission	Applications such as laser remote sensing, medical surgery, and pumping Mid-IR
	from the 517 - 518 transition	OPO's to achieve 3-5micron emission. Ho: YAG laser can be pumped directly by
		diode lasers or by Tm-doped fiber lasers, with high slope efficiencies
	AR Coating Passive Q Switches Cr4+ Yag Laser Rod For Beauty Laser	
	Machine	High chemical stability and reliability
	Cr4+: YAG crystals have several advantages when compared to	
	traditional passive Q-switching choices such as organic dyes and color	
	centres materials. Cr4+: YAG is chemically stable, UV resistant and it is	
	· · · ·	Application: Passively Q-switched lasers for laser rangefinders, LIDAR and LIBS
	conditions	systems, Laser systems where short pulses are required

Pockels cell Q switch

Pictures	Materials / Sizes	Features / Applications
	LGS Series Electro - Optic Pockel Cell Q Switch Active NLO Material A new kind of EO Q-switch is designed by use of a La ₃ Ga ₅ SiQ ₁₄ (LGS) crystal. LGS crystal is one kind of optically active NLO material with very high damage threshold (about 9 times as that of LN), excellent E-O	For wavelengths up to 3.2μ m; Transmitted wave front distortion: < 1/4; Damage threshold: > $900MW/cm^2$ (@1064nm, 10ns, typical, not guaranteed);

www.nanostone.sg

-		r
		LGS available for medium power systems, partially take place of DKDP and
	based on the consideration that the total rotation angle of the polarization	
		The LGS (LG-EO-Q) series Q-switch (Pockels Cell) is a practical electro-optic
	cell back and forth, with the polarization plane gyration and electro-optic	device that can be used in medium output energy lasers to partially take the place of
	effect existing simultaneously, therefore it is widely used in E-O	DKDP and LiNbO ₃ series Q-switches
	components such as E-O modulator, Q-switch, etc.	
	SGS Single Crystal BBO Pockels Cells UV Transmission Low	
	Acoustic Noise	High repetition rate
	BBO is one of the electro-optic material choices for high average power	High peak power damage resistance
	E-O Q switch applications. BBO has significant advantages over other	Low absorption
	materials in terms of laser power handling abilities, temperature stability,	
	and substantial freedom from piezoelectric ringing. Because it relies on	
	the electro optic effect, switching time - aided by the low capacitance of	The wide transparency range of BBO allows it to be used in diverse applications
	the E-O Q switch is very fast	
	1064nm Single Crystal BBO NLO Pockels Cell Q Switch for Cavity	These Pockels cell have different functions to meet different needs of customers ir
e lles	Dumping	various fields
	Beta Barium Borate (BBO) crystal is a Nonlinear Optical Crystal with a	High repetition rate DPSS Q-switch
	combination of unique features: wide transparency region, broad phase-	
	matching range, large nonlinear coefficient, high damage threshold, wide	
	thermal acceptance bandwidth and high optical homogeneity	Beam chopper
	1064nm DKDP Pockels Cell Q Switch High Damage Threshold	
	The DKDP crystal is a uniaxial crystal with excellent optical quality with	High deuteration (> 98%) DKDP; No static birefringence
	an extinction ratio of > 2000:1 (measured using a 632nm He-Ne laser)	
	with a wave front distortion of 98%. The DKDP electro-optic Q-switching	
		High damage threshold; Low $\lambda/4$ Voltage; Single pass optical transmission
₽/2 - 32g		Applications: Laser systems with large caliber, high power and narrow pulse width
		They are among the optimal E-O Q-switches used in pulse laser systems, including
		OEM laser systems; Medical/cosmetic lasers; Versatile R&D laser platforms
	1GW/cm ² under optical conditions of 10ns pulse width, 1064nm	
	wavelength and repetition frequency 10Hz	, , , , , , , , , , , , , , , , , , ,
L		1

4 Other single crystals

Pictures	Materials / Sizes	Features / Applications
----------	-------------------	-------------------------

6.0g/Cm3 Colorless Laser Grade Tellurium Dioxide TeO₂ Crystal Tellurium Dioxide Crystal (TeO ₂) is one of the best Acousto-Optic crystals even grown, and extensively used in AO modulators, deflectors, AO tunable filters (AOTFs), laser Q-switches, RF spectrum analyzers	
	Good UV transmission High optical damage threshold High birefringence High nonlinear coefficients Applications: Laser frequency conversion - harmonic generation for high pulse energy, Electro-optical modulation, Q-switching crystal for pockels cells
BBO Barium Borate Crystal Dien Laser Nonlinear BaB₂O₄ Wide transparency BBO is very good for tunable laser sources, such as ultrafast Ti: Sapphire or dye lasers. And it is also widely used for SHG, 3HG, 4HG, and autocorrelation of femtosecond and picosecond Ti: Sapphire lasers; SHG, 3HG, 4HG, 5HG of YAG lasers at 1064nm and 1320nm to yield output of 212-660nm; SHG of tunable dye or solid-state laser sources from 410-750nm to yield output of 205-375nm, SFM of dye laser and YAG harmonics to yield output of 189-400nm	Large nonlinear optical coefficients Wide transparency ranges

LaAlO₃ crystals and wafers

Pictures	Materials / Sizes	Features / Applications
	Square <100> Low Microwave Loss Optical Substrate Lanthanum	
	Aluminate Laalo3 Target	Good lattice match to most materials with Perovskite structure
	LaAlO3 is a high temperature superconducting single crystal substrate. It	Low dielectric constant
	is a good substrate material for epitaxial growth of high temperature	Low microwave loss
	superconducting thin films and giant magnetic thin films. Its dielectric	Applications: High temperature superconductors, Magnetic and ferro-electric thin
	properties are suitable for low loss microwave and dielectric resonance	films, Low loss microwave, Dielectric resonance
	applications	

	LaAIO ₃ is a high temperature superconducting single crystal substrate. It is a good substrate material for epitaxial growth of high temperature superconducting thin films and giant magnetic thin films. Its dielectric properties are suitable for low loss microwave and dielectric resonance	Wide energy gap; Large specific surface area; Certain activity; Applications: Electronic devices Catalysis High temperature fuel cell. Ceramics
--	---	--